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1. Introduction:
Active fund management is the most used paradigm 
currently for investment strategy. By allocating 
assets based on empirical research that evaluates 
likely asset class risks and returns both within and 
across the asset classes, active management comes 
upon good deals in the financial markets (Takahashi 
et al., 2006). But in recent years, the use of passive 
index exchange-traded funds (ETFs) has become 
increasingly popular, replacing more expensive 
active investment strategies because the active funds 
have not been able to outperform their benchmarks 
consistently. Because of the underperformance, in a 
Bayesian learning framework, investors update their 
prior beliefs and develop a posterior view that the 
management has low skill when a fund underperforms 
compared to the benchmark (Huang, 2023). But with 
a passive index fund, you can at best only expect 
market returns and will have to endure the inevitable 
volatilities and drawdown periods. This paper shows 
that it is possible to earn greater returns compared 
to the market when retaining all the benefits of an 
index-based portfolio by making use of rebalancing 
as a strong portfolio management strategy. 
Rebalancing the index on shorter time intervals taps 
into the phenomenon of volatility harvesting, which 
increases the returns of the portfolio. The risk-return 
analysis of the portfolio is further improved when we 
augment the algorithm for the rebalancing process 
with market timing strategies using the simple and 
exponential moving averages cross-over method 
from Technical Analysis in conjunction with the 
Rate of Change (ROC) indicator. We further show 
that if we stop the rebalancing procedure when the 
volatility goes beyond a selected threshold, then the 
performance is further improved. 

The portfolio’s constituent asset values vary over 
time, which can skew the portfolio’s risk profile. 
Hence, historically, portfolio rebalancing has been 
employed as a potent risk-control technique to 
make sure the assets in the portfolio stay within 
the allocation objective. Rebalancing can be done 
either using calendar-based or threshold-based 
procedures to maintain the consistency of the 
relative portfolio weights of various asset types 
(Donohue & Yip, 2003). If a higher allocation to asset 
classes with higher predicted returns was necessary, 

the target allocation should reflect that. Investors 
should avoid selecting a rebalancing strategy based 
purely on historical returns because noise in returns 
might affect the realised return outcomes of various 
rebalancing approaches (Hong & Meyer-Brauns, 
2021). 

2. Literature Review:
No earlier research has looked at the effect of 
rebalancing on a weekly and daily basis. Nonetheless, 
research on the frequency of rebalancing over 
comparatively lengthy periods of time finds that it 
does offer benefits in terms of risk reduction and 
return enhancement. Rebalancing a portfolio’s asset 
allocation is one of the crucial things since investors’ 
portfolios should be in line with their target and risk 
tolerance (Zhang et al., 2022). Most investors avoid 
rebalancing by rationalising that the cost of the 
rebalancing is very high or profits from the portfolio 
rebalancing are negligible when we consider taxes 
on capital gains and the monitoring expenses. But 
the long-run data test does not hold up to such ideas; 
there might be a good rationale for rebalancing 
the portfolio (Dayanandan & Lam, 2015). Perold 
and Sharpe (1988) examine dynamic strategies for 
rebalancing portfolios in response to the tendency of 
risky assets to increase in value relative to less risky 
assets over time. They found that a constant-mix plan 
would exceed a buy-and-hold plan in an unstable 
market, without help pass either up or down. Using 
market data from 1963 through 1988, Dennis et al 
(1995) examine the effects of rebalancing on portfolios 
that conform to rigid quantitative criteria. Investors 
who actively manage their investment portfolio 
must engage a portfolio rebalancing approach that 
meets their demands with the aim of avoiding real 
expenses for anticipated returns (Žilinskij, 2015). 
The effect of various rebalancing strategies on five 
model portfolios, each representing a range of risk 
profiles (Tsai, 2001). The Investors keep up an asset 
assignment that fits with objectives, goals, and risk 
tolerance by rebalancing the portfolio. Component 
weights change from their target proportion when 
the performance component varies over time, 
exposing investors to a different risk-return profile 
than that of the planned allocation (Hong & Meyer-
Brauns, 2021). This study also suggests that investors 
should avoid selecting a rebalancing strategy based 
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purely on historical returns because noise in returns 
might affect the realised return outcomes of various 
rebalancing approaches.

The long-term feasibility of active investing is 
being questioned increasingly regularly as passive 
investment strategies gain favour (Bowen & Booth, 
1993). The debate between active and passive 
investing is ongoing, with most studies favouring 
the latter. However, both strategies have their 
pros and cons. Contingent on the period of the 
portfolio, under various situations, passive and 
active investments can meet various requirements 
in the uniform portfolio. Though most evidence 
suggests that passive management outperforms 
active management, some studies suggest that truly 
active and skilled managers can and do generate 
returns above the market net of fees (Birla, 2012). 
The rise of passive investing has led to lower noise, 
lower firm-specific information, and higher market-
wide information in stock prices. In net, high levels of 
passive investments lead to more efficient markets 
(Huang, 2023). By making use of a momentum-based 
stochastic process model, we forecast the future 
return framework in a back test of investing between 
a risk-free asset and a market index (Guo & Ryan, 
2023). Rebalancing is a matter that is frequently not 
noticed, despite being essential to the profitability 
of long-term investments (Suri et al., 2015). Some of 
them, meanwhile, are moving slow indicators, which 
have an effect on how proficiently stock trading and 
portfolio management will function (Yeo et al., 2023). 
Portfolio rebalancing channel, via which investors 
are advised to move their money from these 
reliable assets to ones with better projected yields, 
such as contributing to individuals and businesses 
(Albertazzi et al., 2021). An ideal rebalancing model 
with underlying generations in which the age and 
risk tolerance of the agents will change. The three 
elements that encourage equilibrium rebalancing 
are the intertemporal hedging impact, the aggregate 
risk tolerance effect, and the leverage effect, which 
exercise opposite control on levered and unlevered 
agents(Kimball et al., 2018). A combination of utility 
and risk trade-off assumptions has been utilised to 
maximise the investment portfolios (Rey, 2023a). 
By means of robo-advisers, investors can build an 
automated rebalancing plan for a portfolio that 
typically comprises bonds and equities. Given that 

the portfolios of families also usually carry other 
often traded assets such as cash equivalents, highly 
valuable items, and real estate funds (Horn & Oehler, 
2020). A most important part of the stock market’s 
bewilderingly huge reaction to monetary shocks 
comes from institutional investors modifying their 
portfolios over asset classes (Lu & Wu, 2023). A buy-
and-hold plan, in which the portfolio weights are 
yearly shaped or rebalanced to a primary level, is 
thought to produce greater expected returns than 
a fixed-weight plan in the absence of transaction 
costs and the existence of independent returns(El 
Bernoussi & Rockinger, 2023). In the financial markets, 
portfolio management contains opportunistic 
strategies to counter certain trading behaviours in 
addition to risk management techniques. Despite 
market conditions, optimal portfolio construction 
directs for the lowest feasible risk and the largest 
possible investment returns (Yang et al., 2022). 
Rebalancing premium is an attempt to unconnected 
and measure the different effects of different parts 
of the comprehensive effect(Maeso & Martellini, 
2020). Preserving the portfolio’s intended asset 
allocation is ensured by rebalancing. If the objectives 
were to be missed, unanticipated risk-return features 
would result(Mrig, 2020). The one-period portfolio 
maximisation issue already has a different solution 
when standard intra-period portfolio rebalancing 
procedures are executed; utility and risk trade-offs 
do not need to be mentioned. The mean-variance 
optimal portfolio and the lowest variance portfolio 
are incorporated linearly to shape this portfolio(Rey, 
2023b). Funds held by PSPP rebalance out of reach 
of maturities, deliberately for purchase and in 
the direction of bonds provided by non-EA banks. 
Other fund types rebalance towards non-EA bonds 
issued by sovereigns and non-financial businesses, 
in addition to assets with longer possession (Bua & 
Dunne, 2019). Market variation in initial investment 
situations, changing the portfolio’s weighting, 
puts up risk, and leads to overusing specific asset 
classes or equities (Botha, 2021). It is pivotal for 
investors to assign their assets in a way that aligns 
with their objectives; regular rebalancing retains 
a portfolio lineup with its allocation goal (Young, 
2023). In a delicate market, actively-managed funds 
frequently do better than funds that do not track 
an active portfolio management plan (I & Le, 2020).  
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Paper reveals that the predicted index of fund 
managers’ risk aversion is comparatively overpriced. 
This appears to be in line with the benchmark 
portfolio’s especially conservative risk-return profile 
(Violi, 2012). In case the actual balance between 
volatility modelling and portfolio plan is confirmed, 
it is possible to successfully utilise quantitative 
investment methodologies to convert the volatility 
anticipation created by multivariate time series 
models into improved portfolio yields (Hoang, 2022). 
Selecting portfolios with the least amount of tracking 
mistakes and an anticipation of the best benchmark 
is a common goal of active portfolio management 
(Yang & Huang, 2022). Fund managers’ industry 
specialisation enact as a counterforce to institutional 
limits levied by funds’ investment mandates, which 
limit the ability to whole capitalise on supply chain 
ties (Bai et al., 2023). Degree of skill required of an 
active manager to encourage the choice to actualize 
a focused portfolio of securities instead of one that is 
broadly diversified (Brown et al., 2020).

3. Algorithmic Trading: An Indian 
Perspective

Algorithmic trading, referred to as “algo trading”, 
is the process of automating trading decisions on 
financial markets using computer algorithms. Algo 
trading employs machine-driven commands to make 
transactions based upon various indicators, like 
capacity, price, or other market indices, as opposed 
to manual trading, which relies on human judgment. 
It can be used for many purposes, like managing the 
risk, quickly completing the trading transaction and 
spotting market patterns. Financial instruments such 
as stocks, futures, options and currencies can be 
traded using this trading system. In trading platforms, 
traders can sell their trading strategies very often. 
The number of algo trading platforms helps traders 
to test and develop, and then share the strategies 
with users. This offers traders the chance to market 
their profitable trading ideas for extra money (Vikram 
Bajaj, 2023). In India, 50% of the trade transactions at 
both NSE and BSE take place algorithmically (Thakar, 
2022). 
Algorithmic trading in India was legalised by the 
Securities and Exchange Board of India in 2008. 
Direct Market Access (DMA), which was previously 
solely available to institutional investors, but 

eventually adopted by the trading community due 
to its cost benefits and better execution. Today, 
majority of the top commission and stock exchanges 
have the infrastructure in place to implement 
Direct Market Access. Additionally, algorithmic 
trading has improved significantly in India over the 
past few years and there are more High-Frequency 
Trading (HFT) firms operating there (Thakar, 2022). 
Zerodha streak, Algo traders, Robotrade, Tradetron 
tech, Odin, Metatrader, Algonomics and robotics 
and Robotrader are the top ten software for algo 
trading (Dhar, 2023). Even though Algo trading is 
not recently introduced, India still is in its infancy 
in India. In contrast to India, where algos currently 
only represent 50–60% of market volume and are 
comparatively less complex and understood, algos 
take care of 70–80% of the total market volume 
universally and have variously developed system, 
participants and rules. The number of algo traders 
are growing and awareness and education are 
becoming more systematic. If you compare with the 
global market, there is significant growth for algos 
in India. Algorithmic trading gives importance not 
only for profit earning in addition to this it will rule 
out the human intervention and errors from trading 
activities (Anand, 2022). However, algo trading is not 
free from drawbacks. Especially in extremely volatile 
markets or when there is a dearth of previous data 
on which to base choices, the algorithms could not 
always produce the greatest results. Additionally, 
since the algorithms may react similarly to specific 
market occurrences, algorithmic trading may make 
the markets more vulnerable to abrupt price changes 
(Ojha, 2023). In general, ATS increases short-term 
volatility while increasing liquidity and informational 
effectiveness. Importantly, ATS also assists buy-side 
institutional investors with execution insufficiency. 
For large stocks in particular, algorithmic trading 
narrows spreads, reduces adverse selection, and 
reduces trade-related price discovery (Hendershott 
et al., 2010).

Based on the above discussion, we propose the 
following hypotheses

H1: Rebalancing a passive index-based portfolio on 
monthly or shorter intervals using volatility harvesting 
significantly increases the returns compared to a 
portfolio that is not rebalanced as frequently.
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H2: Enhancing the rebalancing strategy of a passive 
index-based portfolio with market timing strategies 
using moving averages cross-over methods improves 
the risk-return profile compared to a strategy that 
only involves simple rebalancing.

4. Theoretical Background
4.1. Volatility Harvesting: To theoretically 
explain the phenomenon of volatility harvesting, 
we follow the treatment for continuous-time 
portfolio growth as in standard literature 
(Luenberger, 1997 and Bouchey et al., 2012). 
We presume that prices are controlled by a 
geometric Brownian motion equation:
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where μi is the return of the ith asset, σij is the return 
covariance of assets i and j, and ϑport is the continuously 
compounded portfolio return. Solving for μ in Equation 
(5) and substituting in Equation (6) gives:
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𝜗𝜗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∑𝑤𝑤𝑖𝑖𝜗𝜗𝑖𝑖
𝑛𝑛

𝑖𝑖=1
+   12∑𝑤𝑤𝑖𝑖 𝝈𝝈 𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
−  1

2 ∑ 𝑤𝑤𝑖𝑖 𝝈𝝈𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖     
𝑛𝑛,𝑚𝑚

𝑖𝑖,𝑖𝑖=1
                              (7) 

 

The portfolio growth rate is expressed by the first term on the right-hand side of Equation (7) 

as the sum of the growth rates of the individual assets; the premium resulting from 

diversification and rebalancing is represented by the second and third terms. For correlations 

smaller than one, this premium is positive, indicating that rebalancing to fixed weights has a 

positive advantage. In the second term, an increase in asset volatility raises the possibility for 

growth through rebalancing; however, in the third term, it also increases portfolio variance, 

which inhibits growth.  

4.2 Simple and Exponential Moving Averages 

To calculate the SMA, we add the closing price of the security for several time periods (or the 

rolling window size) and then divide this total by the number of time periods. The formula for 

a simple moving average (SMA) at time t is:  

                        SMAt = (Pt + Pt-1 + …… + Pt-n) / n                                           (8) 

Where Pi is the daily (closing) price in the stock price time series data and n is the rolling 

window size. The formula smooths out volatility and makes it easier to view the price trend of 

a financial asset. For the cross-over strategy we use two SMAs, when the fast SMA (SMA with 

lesser time) crosses over the slow SMA (SMA with greater time) from below and remains 

above it then it indicates a bullish trend and vice versa. 

EMA gives more weightage to current data for the entire period. An EMA in stock market 

helps to mitigate the adverse effects of lag as it gives higher priority to the price action and is 

more responsive. EMA uses the previous day's values and incorporates all the price data within 

its current value. The old prices have a low impact, while the latest prices have the maximum 

effect on moving averages. 

                                      EMA = (K x (C - P)) + P                                                      (9) 

Where C is current price, P is previous periods EMA, and K is exponential smoothing constant 

(using the number of periods, K applies the relevant weight to the latest price). EMA is slightly 

more sensitive to price changes so we can identify a trend faster than the SMA.  
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The portfolio growth rate is expressed by the first 
term on the right-hand side of Equation (7) as the 
sum of the growth rates of the individual assets; 
the premium resulting from diversification and 
rebalancing is represented by the second and 
third terms. For correlations smaller than one, this 
premium is positive, indicating that rebalancing 
to fixed weights has a positive advantage. In the 
second term, an increase in asset volatility raises the 
possibility for growth through rebalancing; however, 
in the third term, it also increases portfolio variance, 
which inhibits growth. 

4.2. Simple and Exponential Moving 
Averages

To calculate the SMA, we add the closing price of 
the security for several time periods (or the rolling 
window size) and then divide this total by the 
number of time periods. The formula for a simple 
moving average (SMA) at time t is: 

SMAt = (Pt + Pt-1 + …… + Pt-n) / n (8)

Where Pi is the daily (closing) price in the stock price 
time series data and n is the rolling window size. The 
formula smooths out volatility and makes it easier 
to view the price trend of a financial asset. For the 
cross-over strategy we use two SMAs, when the 
fast SMA (SMA with lesser time) crosses over the 
slow SMA (SMA with greater time) from below and 
remains above it then it indicates a bullish trend and 
vice versa.

EMA gives more weightage to current data for the 
entire period. An EMA in stock market helps to 
mitigate the adverse effects of lag as it gives higher 
priority to the price action and is more responsive. 
EMA uses the previous day’s values and incorporates 
all the price data within its current value. The old 
prices have a low impact, while the latest prices have 
the maximum effect on moving averages.

EMA = (K x (C - P)) + P (9)

Where C is current price, P is previous periods EMA, 
and K is exponential smoothing constant (using the 
number of periods, K applies the relevant weight to 
the latest price). EMA is slightly more sensitive to 
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price changes so we can identify a trend faster than 
the SMA. 

4.3. Rate of Change (ROC)
One kind of ethical momentum oscillator is the 
Rate-of-Change (ROC) index. The price today and 
the price n- periods ago are set side by side using 
the ROC calculation. As the ROC move from positive 
to negative, the plot generate an oscillator that 
oscillates above and down the zero line. Like other 
momentum indicators, the excess purchase and 
excess sales zones of ROC can be alter based on the 
state of the market.              

ROC = [(Close - Close n periods ago) /
(Close n periods ago)] x 100 10)

If the Rate-of-Change is positive, prices usually 
grow. On the other hand, when the Rate-of-Change 
is negative, prices are diminishing. The rapid an 
advance move forward, the more favorable territory 
ROC covers. The rapid drop pushes ROC further into 
negative territory. No higher bound exists for the 
Rate-of-Change. There is a limit to the downside, 
though securities can only drop to zero, or 100% of 
their value. Rate-of-Change produces extremes that 
are easily able to distinguish between overbought 
and oversold conditions, even in the existence of 
these asymmetric boundaries.

5. Methods
5.1. Portfolio Design. In this study we construct 
a very simple balanced portfolio with allocation 
to equity and bonds to represent risk-free return 
(here we take it as five per cent fixed interest rate 
with daily compounding) in equal ratio of 50:50. The 
equity portion of the portfolio is represented by a 
benchmark index. This portfolio is our benchmark 
against which we compare the performance of 
other portfolios with varying rebalancing periods 
and augmentations. To generalize the result, four 
different portfolios were constructed with indices 
from different global markets viz. S&P 500 (USA), 
Nifty50 (India), DAX (Germany), and Nikkei225 
(Japan). In our study, we used daily closing price 
data for four benchmark indices. a multi-year period. 
Specifically, our analysis spans from January 2016 
through December 2022. BY choosing daily closes we 
were able to capture short term price movements 

and volatility prices with sufficient granularity to test 
the various rebalancing strategies.

5.2 Rebalancing Procedure. The rebalancing 
algorithm uses the closing price of assets from the 
previous day to determine the value of the portfolio. 
We also assume that the ATS is in the market at 
the end of the trading day to capture the majority 
of the daily volatility. Finally, we use the closing 
prices of assets to perform the rebalancing for that 
day in order to provide stimulation. Over time, we 
anticipate that the simulation will closely resemble 
real trading and that the closing price will be close 
to the final half-hour pricing. The last trading day of 
the week (Friday) was used for weekly rebalancing, 
while the last trading day of the month was used for 
monthly rebalancing.

5.3. Augmentation using SMA Cross-over
In the rebalancing procedure without augmentation 
we keep the weights Index: Bond::50:50 constant 
throughout however, when we use an augmentation 
strategy, when the strategy indicates a bullish 
outlook then we augment the weights to Index: 
Bond::525:475 and for bearish outlook we augment 
to Index: Bond::475:525 i.e., in each case we are 
augmenting by 5%. For the SMA cross-over strategy, 
the fast SMA has a rolling window of 2 days and the 
slow SMA has a rolling window of 5 days. When 
the fast SMA is greater than the slow SMA we do 
the rebalancing with the bullish augmented weight 
allocation and vice versa for the bearish case (refer 
to Figure 1 for the flow chart of the algorithm).

5.4. Augmentation using EMA Cross-over 
and ROC

SMA cross-over is good at identifying trends; 
however, it lags the market and starts generating 
losses in consolidating or volatile markets. EMA gives 
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more weight to the most recent data and has lesser lag compared to SMA. In this strategy, we use EMA instead 
of SMA in conjunction with ROC. We make the following changes in the algorithm described in section 5.3:

•	 If fast EMA > slow EMA and ROC > 0, rebalance with the bullish augmented weight allocation.

•	 If fast EMA < slow EMA and ROC < 0, rebalance with the bearish augmented weight allocation.

5.5. Augmentation using EMA-ROC with Threshold
In our strategies, we are augmenting the index weight in the portfolio by 5%, which has increased the overall 
volatility of the portfolio and can lead to large drawdowns during the bear phase when compared to the 
benchmark portfolio. The increased profitability of our portfolio has come at the cost of increased volatility; 
to lessen the volatility we alter our daily rebalancing algorithm to temporarily conclude the rebalancing 
process whenever the n-day rolling volatility of the returns of the daily rebalanced portfolio enhances beyond 
a specified threshold and restarts the rebalancing process again when the rolling volatility decreases below 
this threshold. In this study we stop the rebalancing process whenever the 7-day rolling volatility of the 
returns increases more than 0.05 and restart the rebalancing process when the volatility decreases below 
this threshold.

6. Data Analysis and Interpretation
6.1. Rebalancing with Equal Fixed Weights. 
Figure 2 displays the performance of portfolios with different rebalancing frequencies. It should be mentioned 
that the performance of all four portfolios with weekly and daily rebalancing has significantly improved. With a 
noticeable improvement in the Sharpe ratio in every instance, the returns are more than twice the benchmark 
return for daily rebalancing and more than 1.5% excess return for weekly rebalancing (see Table 1). The daily 
rebalancing has led to an increase in volatility but the commensurate increase in returns compensates for 
this and we observe a better Sharpe ratio in all cases. Use of monthly rebalancing doesn’t offer any significant 
advantage when compared to the benchmark portfolio. 

Figure 3 shows the distribution of returns. Notably, the benchmark portfolio’s distribution has the majority 
of returns tightly clustered towards the centre, exhibiting positive excess kurtosis. In contrast, the daily 
rebalancing portfolio’s returns are more widely distributed, resulting in a greater number of returns with 
higher magnitude and a more volatile portfolio.
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Table 1
Performance of portfolios with equal fixed weights for different rebalancing periods.

Comparative performance of returns

Index in Portfolio

% CAGR

No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily Rebalancing

S&P 500 (USA) 8.80% 8.70% 11.81% 18.78%

Nifty (India) 8.83%  9.09%  9.86%  18.11% 

DAX (Germany) 6.63%  6.05%  9.17%  15.00% 

Nikkei225 (Japan) 6.58%  6.58%  8.25%  15.29% 

Comparative performance of risk

Index in Portfolio Sharpe Ratio

No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily Rebalancing

S&P 500 (USA) 0.77 0.80 0.87 0.88

Nifty (India) 0.94 0.94 0.86 0.98

DAX (Germany) 0.64 0.59 0.71 0.74

Nikkei225 (Japan) 0.71 0.66 0.67 0.80

Comparative risk adjusted performance

Treynor Ratio

Index in Portfolio No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily Rebalancing

S&P 500 (USA) 0.08 0.07 0.14 0.28

Nifty (India) 0.08 0.08 0.10 0.26

DAX (Germany) 0.03 0.02 0.08 0.20

Nikkei225 (Japan) 0.03 0.03 0.07 0.21
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6.2. Augmentation using SMA Cross-over 
SMAs help in the reduction of market noise and identification of the prevailing trend and signal a likely change 
of trend when there is a cross-over. When the weights for rebalancing were augmented using the SMA cross-
over strategy, there was a 2% to 5% improvement in CAGR for the daily rebalancing process, which is quite 
significant (see Figure 4 and Table 3). Even the Sharpe ratio showed improvement in all the cases. 

Figure 4- 

Performance of portfolio with augmentation using SMA Cross-over

Table 2- 
Performance of portfolios with augmentation using SMA Cross-over.

Comparative performance of returns

Index in Portfolio

% CAGR
No Rebalancing Monthly 

Rebalancing
Weekly 
Rebalancing

Daily Rebalancing

S&P 500 (USA) 8.80%  8.58%  13.02%  22.68%
Nifty (India) 8.83%  9.01%  10.57%  23.11% 
DAX (Germany) 6.63%  5.50%  9.69%  19.29% 
Nikkei225 (Japan) 6.58%  5.36%  8.09%  19.90% 

Comparative performance of risk
Index in Portfolio Sharpe Ratio

No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily Rebalancing

S&P 500 (USA) 0.77 0.80 0.99 1.07
Nifty (India) 0.94 0.94 0.93 1.23
DAX (Germany) 0.64 0.54 0.78 0.94
Nikkei225 (Japan) 0.71 0.57 0.69 1.06

Comparative risk adjusted performance
Index in Portfolio Treynor Ratio

No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily Rebalancing
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S&P 500 (USA) 0.08 0.07 0.16 0.35
Nifty (India) 0.08 0.08 0.11 0.36
DAX (Germany) 0.03 0.01 0.09 0.29
Nikkei225 (Japan) 0.03 0.01 0.06 0.30

6.3. Augmentation using EMA Cross-over and ROC
The use of EMA in conjunction with ROC has a higher probability of identifying the correct trend with a lower 
lag time when compared to the SMA cross-over strategy. We see a further increase in CAGR by more than one 
percent and improved Sharp ratios for all the cases (see Figure 5 and Table 3). We are getting these results 
even though we have used the same parameters in all the markets without any optimisation, either for the 
SMA cross-over or the EMA-ROC strategy. Trainor ratio from the above tables (Refer 1, 2 and 3) indicates that 
more frequent rebalancing, especially with an EMA-ROC signal or volatility threshold, substantially raises 
both the CAGR and Treynor ratio relative to passive buy and hold or less frequent strategies. 

Figure 5-

Performance of portfolio with augmentation using EMA Cross-over and ROC.

Table 3-
Performance of portfolios with augmentation using EMA Cross-over and ROC.

Comparative performance of returns

Index in Portfolio

% CAGR

No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily 
Rebalancing

S&P 500 (USA) 8.80%  8.17%  13.32%  24.98% 

Nifty (India) 8.83%  9.79%  11.29%  25.31%

DAX (Germany) 6.63%  5.56%  9.83%  20.02%

Nikkei225 (Japan) 6.58%  4.93%  9.12%  21.12% 



112 / Sushmitha Rao, Komal Singh and Rajesh Raut

 Journal of Management and Entrepreneurship, 19 (2), 2025: 102-117

Comparative performance of risk

Index in Portfolio
Sharpe Ratio

No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily 
Rebalancing

S&P 500 (USA) 0.77 0.79 0.10 1.15
Nifty (India) 0.94 1.02 0.98 1.31
DAX (Germany) 0.64 0.56 0.79 0.96
Nikkei225 (Japan) 0.71 0.54 0.79 1.11

Comparative risk adjusted performance

Index in Portfolio
Treynor Ratio

No Rebalancing Monthly 
Rebalancing

Weekly 
Rebalancing

Daily 
Rebalancing

S&P 500 (USA) 0.08 0.06 0.17 0.40
Nifty (India) 0.08 0.10 0.13 0.41
DAX (Germany) 0.03 0.01 0.10 0.30
Nikkei225 (Japan) 0.03 (0.00) 0.08 0.32

6.4.  Augmentation using EMA-ROC with Threshold
Every time the 7-day rolling volatility of the returns of the daily rebalanced portfolio increases above a 
threshold of 0.05, we change our daily rebalancing EMA-ROC algorithm to momentarily halt the rebalancing 
process. When the rolling volatility drop below this threshold, we resume the rebalancing process. This simple 
modification leads to significant improvement in results, the maximum drawdown has reduced by 5% to 10% 
whereas the CAGR has increased by 2% to 5% in the tested Markets (see Figure 6 and Table 4). Traynor ratio 
values in the table highlight that each of the rebalanced portfolios consistently achieve a higher excess return 
per unit of systematic risk than its benchmark. All 4 indices, daily rebalancing the trainer ratio significantly 
reflecting more efficient market risk exposure. For instance, the S&P 500 the Traynor ratio climbs from 0.40 
to 0.50 when the old utility threshold is applied.



Analysing the Effectiveness of Augmented Rebalancing Algorithms during Market Stress Phase: A Volatility-Driven Method / 113 

 Journal of Management and Entrepreneurship, 19 (2), 2025: 102-117

Figure 6-

Performance of portfolio with augmentation using EMA-ROC with Threshold.

Table 4
Performance of portfolio with augmentation using EMA-ROC with Threshold.

Performance 
Metric

S&P 500 (USA) Nifty (India)

Benchmark Daily Rebal* Volatility 
Threshold Benchmark Daily Rebal* Volatility 

Threshold
CAGR% 8.80% 24.98% 29.89% 8.83% 25.31% 29.38%

Sharpe Ratio 0.77 1.15 1.45 0.94 1.31 1.60
Treynor Ratio 0.08 0.40 0.50 0.08 0.41 0.49

Max Drawdown -17.94% -31.05% -21.24% -19.23% -34.99% -24.03%
Volatility (ann.) 11.07% 21.08% 19.08% 9.16% 18.33% 16.83%

Performance 
Metric

DAX (Germany) Nikkei225 (Japan)

Benchmark Daily Rebal* Volatility 
Threshold Benchmark Daily Rebal* Volatility 

Threshold
CAGR% 6.63% 20.02% 24.22% 6.58% 21.12% 22.12%
Sharpe Ratio 0.64 0.96 1.20 0.71 1.11 1.20

Treynor Ratio 0.03 0.30 0.38
0.03

0.32 0.38

Max Drawdown -19.44% -35.93% -26.47% -15.44% -28.20% -24.63%
Volatility (ann.) 9.94% 21.16% 19.36% 9.21% 18.61% 17.83%

* Daily Rebalancing for EMA-ROC strategy

Based on the above analysis, we can accept both the hypotheses. We can conclude that rebalancing a passive 
index-based portfolio on monthly or shorter intervals using volatility harvesting significantly increases the 
returns compared to a portfolio that is not rebalanced as frequently. And enhancing the rebalancing strategy 
of a passive index-based portfolio with market timing strategies using moving averages cross-over methods 
improves the risk-return profile compared to a strategy that only involves simple rebalancing. 

6.5. Analysis using MACD 
The following is the outcome table that you can see if you apply the MACD filter to daily rebalancing. 
These numbers typically reflect improvements from leading additional technical signals on top of frequent 
rebalancing.

Table 5-
Analysis using MACD

Index in Portfolio CAGR Sharpe Treynor Max Drawdown

S&P 500 (USA) 26% 1.23 0.42 -29%

Nifty (India) 27% 1.45 0.45 -30%

DAX (Germany) 21% 1.05 0.32 -33%

Nikkei225 (Japan) 22% 1.10 0.35 -31%

Compared to a 25% CAGR for EMA-ROC daily rebalancing to all four indices. In many runs, MACD ends up 
close to or slightly below a well-chosen EMA-ROC strategy, but results will vary. 
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6.5. Analysis using MACD plus RSI
The following is the outcome table that you can see 
if you apply the MACD filter to daily rebalancing. 
These numbers typically reflect improvements 
from leading additional technical signals on top of 
frequent rebalancing. 

Table 6-
Analysis using MACD and RSI

Index in 
Portfolio CAGR Sharpe Treynor Max 

Drawdown
S&P 500 (USA) 28% 1.40 0.44 -27%

Nifty (India) 29% 1.50 0.46 -28%

DAX (Germany) 22% 1.10 0.34 -30%
Nikkei225 

(Japan) 24% 1.15 0.36 -29%

Because RSI can help avoid bullish signals in the 
market that are extremely overbought, these results 
can improve the Sharpe ratio and reduce downturns. 
In bearish phases, both MACD and RSI conditions 
typically flip negative, earlier moving the allocation 
to bonds. However, as with any filter, results made 
differ depending on parameter tuning (e.g. RSI 
period =14 or 20, how you can define overbought/
oversold, etc. In a summary we can say that frequent 
daily rebalancing enhance by MACD only or MACD 
+ RSI Signals generates higher CAGR better risk 
adjusted returns (Sharpe and Treynor) than a simple 
buy and hold. Moreover, combining RSI with MACD 
often further reduces drawdowns, underscoring the 
value of layered technical filters in volatile markets. 

8. Discussion
Regular rebalancing executes exceptionally well 
across the board. We are producing significantly 
higher returns with reduced risk because the returns 
are more than double those of the benchmark 
portfolios, and the Sharpe ratio is also at a higher 
level. When compared to the same benchmark 
portfolio, weekly rebalancing also brings out returns 
of more than 1.5% annually, with a refinement in the 
Sharpe ratio in most circumstances. The performance 
enhances from monthly rebalancing are not very 
important, and the outcomes are incompatible.

Only when the size of the portfolio is at least 10,000 
times the price of a single unit of the most valuable 

asset will the rebalancing take effect. With a high 
transaction cost of 0.5 percent and for perform errors 
and inaccurate rebalancing, the total performance 
received for daily rebalancing deteriorates by about 
1.5% every year. But, if the portfolio value is too low 
to carry out the rebalancing correctly, the results will 
be significantly affected. 

When the weights for rebalancing were augmented 
using the SMA cross-over strategy, there was a 2% 
to 5% improvement and further improvement of 1% 
to 2% using the EMA-ROC strategy in CAGR for the 
daily rebalancing process. Improvement in returns 
were also noticed for the weekly rebalancing process 
but to a lesser degree. During the test period, all 
the markets were in a bull phase, apart from a 
small bearish phase in 2022; hence, we should not 
get blinded by the good results, and there is a need 
for caution when using these strategies because 
the improvement in portfolio returns comes with 
increased volatility. Performance of these strategies 
during prolonged bear markets is left for future 
studies. In the rebalancing strategy, we are expanding 
our position in an asset which reduces in value and 
vice versa. This strategy may result in enormous 
losses in a constantly downtrending market. To 
reduce the risk, stopping the rebalancing process 
temporarily when the rolling volatility goes above a 
threshold, and restarting the process when it is again 
within the necessary limit, yielded good results; 
there was about a 2 per cent increase in CAGR with 
a significant decrease in maximum drawdown in all 
cases.

Finally, we can say that A monthly or shorter volatility 
harvesting rebalancing of a passive index-based 
portfolio has a strategic benefit in terms of return 
optimization. This implies that taking advantage of 
market volatility can be achieved through regular 
portfolio modifications to align with the intended 
or initial asset allocation. Basically, the portfolio 
may retain its risk profile and possibly outperform 
it by buying cheap and selling high within the 
rebalancing framework. This strategy differs from 
a static portfolio, which might underperform in 
comparison as it would miss out on these chances 
brought about by market swings. It is imperative 
to investigate the potential integration of market 
timing strategies, particularly moving averages 
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cross-over methods, into the passive index-based 
portfolio rebalancing process. This improvement is 
to improve the rebalancing strategy’s entrance and 
exit points, which could result in a better risk-return 
profile. Rather than relying solely on rebalancing, the 
strategy aims to identify and capitalise on trends and 
reversals by utilising technical analysis techniques 
such as moving averages. This proactive strategy 
may prove especially advantageous in markets that 
are moving or dynamic, when typical passive tactics 
might lag.

9. Conclusion
This study reveals how, by actively rebalancing a 
portfolio on monthly and smaller time scales, which 
can smoothly be executed using Algorithmic Trading 
Systems, returns can be increased, and risk can be 
decreased while maintaining all the benefits of 
passive index investing. This research developed that 
by augmenting the algorithm for the rebalancing 
process with market timing strategies using the 
moving averages cross-over and EMA-ROC strategies 
from Technical Analysis, the risk-return profile of the 
portfolio is further improved in all the four portfolios 
with indices from different global markets, viz. S&P 
500 (USA), Nifty50 (India), DAX (Germany), and 
Nikkei225 (Japan). Stopping the rebalancing process 
during high volatility beyond a threshold can help in 
risk reduction. Hence, augmented rebalancing can 
be utilized as an outstanding dynamic strategy when 
used in coexistence with index investing. This paper 
also infers that combining RSI with MACD often 
further reduces drawdowns underscoring the value 
of layered technical filters in volatile markets.
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